第 5 章 尺度参数
5.1 5.1 两独立样本的Siegel-Tukey方差检验
- 假设两总体的位置参数相等,实践中若中位数不等,做平移使之相等
- 取秩时,“首尾交替”
- 与Wilcoxon秩和统计量有关
=read.table("data/salary.txt")
x=x[x[,2]==2,1];x=x[x[,2]==1,1];
y=x-median(outer(x,y,"-")) ##平移
x1=cbind(c(x1,y),c(rep(1,length(x)),rep(2,length(y))))
xy=xy[order(xy[,1]),]
xy1=xy[,1] ##平移后的数据
z=length(z)
n=2:3;b=2:3;
a1for(i in seq(1,n,2)){b=b+4;a1=c(a1,b)}
=c(1,a1+2);z=NULL;
a2for(i in 1:n) z=c(z,(i-floor(i/2)))
=1:2;
bfor(i in seq(1,(n+2-2),2)){
if(z[i]/2!=floor(z[i]/2)){
:(i+1)]=b;
z[i=b+2
b
}
}=cbind(c(0,0,z[1:(n-2)]),z[1:n])
zzif(n==1) R=1;
if(n==2) R=c(1,2);
if(n>2) R=c(a2[1:zz[n,1]],rev(a1[1:zz[n,2]]))
=cbind(xy1,R);
xy2=sum(xy2[xy2[,2]==1,3]);
Wx=sum(xy2[xy2[,2]==2,3]);
Wy=length(x);ny=length(y);
nx=Wy-0.5*ny*(ny+1);
Wxy=Wx-0.5*nx*(nx+1)
Wyxpvalue=pwilcox(Wyx,nx,ny)) (
## [1] 0.02428558
sample | region | rank |
---|---|---|
9343 | 1 | 1 |
9783 | 1 | 4 |
9956 | 1 | 5 |
10258 | 1 | 8 |
10276 | 2 | 9 |
10374 | 1 | 12 |
10533 | 2 | 13 |
10633 | 2 | 16 |
10827 | 1 | 17 |
10837 | 2 | 20 |
10940 | 1 | 21 |
11209 | 2 | 24 |
11393 | 2 | 25 |
11864 | 2 | 28 |
12032 | 1 | 29 |
12040 | 2 | 32 |
12398 | 1 | 31 |
12552 | 1 | 30 |
12642 | 2 | 27 |
12675 | 2 | 26 |
12749 | 1 | 23 |
13199 | 2 | 22 |
13683 | 2 | 19 |
14049 | 2 | 18 |
14060 | 1 | 15 |
14061 | 2 | 14 |
15951 | 1 | 11 |
16079 | 1 | 10 |
16079 | 2 | 7 |
16441 | 1 | 6 |
17498 | 1 | 3 |
19723 | 1 | 2 |
5.2 5.2 两样本尺度参数的Mood检验
- 假设两总体的位置参数相等,实践中若中位数不等,做平移使之相等
- 取秩时,1234…按顺序取秩
=read.table("data/salary.txt")
x=x[x[,2]==2,1];
y=x[x[,2]==1,1];
x=length(x);n=length(y)
m=x-median(outer(x,y,"-"))
x1=cbind(c(x1,y),c(rep(1,length(x)),rep(2,length(y))))
xy=nrow(xy);xy1=cbind(xy[order(xy[,1]),],1:N) N
sample | region | rank |
---|---|---|
9343 | 1 | 1 |
9783 | 1 | 2 |
9956 | 1 | 3 |
10258 | 1 | 4 |
10276 | 2 | 5 |
10374 | 1 | 6 |
10533 | 2 | 7 |
10633 | 2 | 8 |
10827 | 1 | 9 |
10837 | 2 | 10 |
10940 | 1 | 11 |
11209 | 2 | 12 |
11393 | 2 | 13 |
11864 | 2 | 14 |
12032 | 1 | 15 |
12040 | 2 | 16 |
12398 | 1 | 17 |
12552 | 1 | 18 |
12642 | 2 | 19 |
12675 | 2 | 20 |
12749 | 1 | 21 |
13199 | 2 | 22 |
13683 | 2 | 23 |
14049 | 2 | 24 |
14060 | 1 | 25 |
14061 | 2 | 26 |
15951 | 1 | 27 |
16079 | 1 | 28 |
16079 | 2 | 29 |
16441 | 1 | 30 |
17498 | 1 | 31 |
19723 | 1 | 32 |
=xy1[xy1[,2]==1,3];
R1=sum((R1-(N+1)/2)^2)
M=m*(N^2-1)/12;
E1=sqrt(m*n*(N+1)*(N^2-4)/180)
sZ=(M-E1)/s); (
## [1] 2.330917
pvalue=pnorm(Z,low=F)) #单边 (
## [1] 0.009878857
2*min(pnorm(Z,low=F),pnorm(Z)) #双边
## [1] 0.01975771
5.3 5.3 Ansari-Bradley检验
- 假设两总体的位置参数相等,实践中若中位数不等,做平移使之相等
- 用X或Y在混合样本中的秩到两个极端值中最近的一个的秩的距离来度量
=read.table("data/salary.txt");
x=x[x[,2]==2,1]
y=x[x[,2]==1,1];
x=x-median(outer(x,y,"-"))
x1ansari.test(x1,y,alt="greater")
## Warning in ansari.test.default(x1, y, alt = "greater"): cannot compute exact p-
## value with ties
##
## Ansari-Bradley test
##
## data: x1 and y
## AB = 118.5, p-value = 0.02458
## alternative hypothesis: true ratio of scales is greater than 1
5.4 5.4 Fligner-Killeen检验
5.4.1 两样本尺度的精确检验
- 计算|Xij-M|,后求秩
- 考虑Wilcoxon统计量
=read.table("data/salary.txt")
x=x[x[,2]==2,1];x=x[x[,2]==1,1];
y=length(x);n=length(y)
m=y+median(outer(x,y,"-"));
y1=median(c(x,y1))
M=cbind(c(abs(x-M),abs(y1-M)),c(rep(1,length(x)),rep(2,length(y))))
xy=nrow(xy);
N=xy[order(xy[,1]),]
xy=cbind(xy,rank(xy[,1],ties.method="average"))
xy1=sum(xy1[xy1[,2]==1,3]);
Wx=Wx-0.5*m*(m+1);
Wyx=m*n-Wyx;
Wxy=sum(xy1[xy1[,2]==2,3]);
Wypvalue=pwilcox(Wxy,m,n)) (
## [1] 0.03474059
##课本原结果有误
|Xij-M| | region | rank |
---|---|---|
179 | 1 | 1.5 |
179 | 2 | 1.5 |
187 | 1 | 3.0 |
333 | 1 | 4.0 |
355 | 2 | 5.0 |
423 | 2 | 6.0 |
456 | 2 | 7.0 |
530 | 1 | 8.0 |
826 | 2 | 9.0 |
980 | 2 | 10.0 |
1010 | 2 | 11.0 |
1279 | 1 | 12.0 |
1382 | 2 | 13.0 |
1392 | 1 | 14.0 |
1464 | 2 | 15.0 |
1586 | 2 | 16.0 |
1686 | 2 | 17.0 |
1830 | 2 | 18.0 |
1841 | 1 | 19.0 |
1842 | 2 | 20.0 |
1845 | 1 | 21.0 |
1943 | 2 | 22.0 |
1961 | 1 | 23.0 |
2263 | 1 | 24.0 |
2436 | 1 | 25.0 |
2876 | 1 | 26.0 |
3732 | 1 | 27.0 |
3860 | 1 | 28.5 |
3860 | 2 | 28.5 |
4222 | 1 | 30.0 |
5279 | 1 | 31.0 |
7504 | 1 | 32.0 |
5.5 5.5 两样本尺度的平方秩检验
- 绝对离差的秩的平方和
=read.table("data/salary.txt")
x=x[x[,2]==2,1];x=x[x[,2]==1,1];
y=length(x);n=length(y)
m=abs(x-mean(x));y1=abs(y-mean(y));
x1=c(x1,y1);xy0=c(x,y)
xy1=c(rep(1,m),rep(2,n));
xyi=cbind(xy1,xy0,xyi)
xy=cbind(xy[order(xy[,1]),],1:(m+n),(1:(m+n))^2)
xy2=sum(xy2[xy2[,3]==1,5]);
T1=sum(xy2[xy2[,3]==2,5])
T2=xy2[,5];meanR=mean(R);
R=sqrt(m*n*(sum(R^2)-(m+n)*meanR^2)/(m+n)/(m+n-1))
S=(T1-m*meanR)/S;Zy=(T2-n*meanR)/S;
Zxpvalue=min(pnorm(Zx),pnorm(Zy))) (
## [1] 0.006255918
绝对离差 | 原样本 | 地区 | 离差秩 | 秩的平方 |
---|---|---|---|---|
248.8824 | 10270 | 1 | 1 | 1 |
297.1333 | 12642 | 2 | 2 | 4 |
304.8667 | 12040 | 2 | 3 | 9 |
330.1333 | 12675 | 2 | 4 | 16 |
445.8824 | 10073 | 1 | 5 | 25 |
480.8667 | 11864 | 2 | 6 | 36 |
599.8824 | 9919 | 1 | 7 | 49 |
854.1333 | 13199 | 2 | 8 | 64 |
951.8667 | 11393 | 2 | 9 | 81 |
965.8824 | 9553 | 1 | 10 | 100 |
1062.1176 | 11581 | 1 | 11 | 121 |
1135.8667 | 11209 | 2 | 12 | 144 |
1338.1333 | 13683 | 2 | 13 | 169 |
1507.8667 | 10837 | 2 | 14 | 196 |
1704.1333 | 14049 | 2 | 15 | 225 |
1711.8667 | 10633 | 2 | 16 | 256 |
1716.1333 | 14061 | 2 | 17 | 289 |
1811.8667 | 10533 | 2 | 18 | 324 |
2057.8824 | 8461 | 1 | 19 | 361 |
2068.8667 | 10276 | 2 | 20 | 400 |
2170.8824 | 8348 | 1 | 21 | 441 |
2623.8824 | 7895 | 1 | 22 | 484 |
2739.8824 | 7779 | 1 | 23 | 529 |
2953.1176 | 13472 | 1 | 24 | 576 |
3041.8824 | 7477 | 1 | 25 | 625 |
3081.1176 | 13600 | 1 | 26 | 676 |
3214.8824 | 7304 | 1 | 27 | 729 |
3443.1176 | 13962 | 1 | 28 | 784 |
3654.8824 | 6864 | 1 | 29 | 841 |
3734.1333 | 16079 | 2 | 30 | 900 |
4500.1176 | 15019 | 1 | 31 | 961 |
6725.1176 | 17244 | 1 | 32 | 1024 |
5.6 5.6 多样本尺度的平方秩检验
=read.table("data/wtloss.txt");
d=nrow(d);
N=max(d[,2])
k=NULL;
d2for (i in 1:k) d2=rbind(d2,cbind(abs(d[d[,2]==i,1]-mean(d[d[,2]==i,1])),d[d[,2]==i,1],i))
=cbind(d2[order(d2[,1]),],1:N,(1:N)^2)
d3=NULL;
Tifor(i in 1:k) Ti=c(Ti,sum(d3[d3[,3]==i,5]))
=NULL;
nifor(i in 1:k) ni=c(ni,nrow(d3[d3[,3]==i,]))
=(N-1)*(sum(Ti^2/ni)-sum(Ti)^2/N)/(sum(d3[,5]^2)-sum(Ti)^2/N)
Tpvalue=pchisq(T,k-1,low=F)) (
## [1] 0.07693023
绝对离差 | 原样本 | 生活方式 | 秩 | 秩的平方 |
---|---|---|---|---|
0.300 | 5.7 | 2 | 1 | 1 |
0.300 | 3.7 | 1 | 2 | 4 |
0.300 | 3.7 | 1 | 3 | 9 |
0.325 | 7.1 | 3 | 4 | 16 |
0.400 | 3.0 | 1 | 5 | 25 |
0.500 | 3.9 | 1 | 6 | 36 |
0.500 | 6.5 | 2 | 7 | 49 |
0.700 | 2.7 | 1 | 8 | 64 |
0.700 | 5.3 | 2 | 9 | 81 |
0.800 | 5.2 | 2 | 10 | 100 |
1.275 | 8.7 | 3 | 11 | 121 |
1.300 | 7.3 | 2 | 12 | 144 |
1.575 | 9.0 | 3 | 13 | 169 |
2.525 | 4.9 | 3 | 14 | 196 |